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Abstract

If g is a quasitriangular Lie bialgebra, the formal Poisson groupF [[g∗]] can be given a braiding
structure. This was achieved by Weinstein and Xu using purely geometrical means, and indepen-
dently by the authors by means of quantum groups. In this paper we compare these two approaches.
First, we show that the braidings they produce share several similar properties (in particular, the
construction is functorial); secondly, in the simplest case (G = SL2) they do coincide. The question
then rises of whether they are always the same this is positively answered in a separate paper.
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1. Introduction

In the study of classical Hamiltonian systems, one is naturally interested in those which
are completely integrable. A natural condition to achieve complete integrability for the
system is that it admit a so called “Lax pair”, thus one typical goal is to find Hamilto-
nian systems admitting such a pair; a standard recipe to obtain this has been provided by
Semenov-Tian-Shansky (see[15]), which explain how to get such a system proceeding
from a pair(g, r) whereg is a Lie quasitriangular Lie bialgebra andr is its r-matrix, a
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classical solution of the classical Yang–Baxter equation (CYBE). The system is built up on
g∗, the Lie bialgebra dual tog, as phase space, and ther-matrixr provides (a recipe for) the
Poisson bracket onC∞(g∗). This raises the question of studying quasitriangular bialgebras,
as objects of special interest within the category of Lie bialgebras in particular, since we
think atg∗ as a phase space, so thatg is its cotangent space, one’s desire is to understand
the geometrical meaning of the classicalr-matrix.

A second motivation for studying the geometrical meaning of the classicalr-matrix
arises from conformal, quantum and topological quantum field theories. Indeed, all these
are concerned with the notion of “fusion rules” which roughly rule the tensor product in
a quasitensor category (see, e.g.[7]). As an application—among others—one has a recipe
which provides tangle and link invariants as well as invariants of 3-manifolds (cf.[16]).
In this setting, the common notion one start with is that of a quasitensor (or “braided
monoidal”) category; such an object can be built up as category of representations of a
quasitriangular Hopf algebra (QTHA). Indeed, by Tannaka–Krein reconstruction theorems
the two notions—quasitensor categories and QTHA—are essentially equivalent, so one may
switch to the study of QTHAs. A key example of QTHA is given by a quantum group, in
the shape of a quantum universal enveloping algebra (QUEA) together with its (universal)
R-matrix. Now, the semiclassical counterpart of a QUEA is a Lie bialgebrag (i.e. the
given QUEA is the quantization ofU(g)). If the QUEA is also quasitriangular, then the
semiclassical counterpart of itsR-matrix is a classicalr-matrixr ong, the pair(g, r) being
a quasitriangular Lie bialgebra. The question then rises of whether—or at least how far—
one can perform the constructions which are usually made via the QUEA and itsR-matrix
(such as that of link invariants) using instead only the “semiclassical” datum of(g, r); then
again the key point will be to understand the geometrical meaning of the classicalr-matrix.

With this kind of motivations, we go and study the following problem. It is known that
if g is a Lie bialgebra (over a fieldK of zero characteristic), then its dual spaceg∗ is a Lie
bialgebra as well. Also, letG be an algebraic Poisson group—or Poisson–Lie group, say,
whenK ∈ {R,C}—whose tangent Lie bialgebra isg. Now assumeg is quasitriangular,
with r-matrix r. This gives tog some additional properties; two questions then rise:

(∗) What an additional structure one obtains on the dual Lie bialgebrag∗?
(•) What is the geometrical global datum onG which is the result of “integrating”r?

Of course, the two questions and their answers are necessarily tightly related.
First, an answer to question(∗) was given by the authors in[13] (cf. also[8,9,14]). The

topological Poisson Hopf algebraF [[g∗]] (the function algebra of the formal Poisson group
associated tog∗) is braided(see the definition later on).

The result in[13] was proved using the theory of quantum groups. Indeed, after Etingof–
Kazhdan (cf.[5]) every Lie bialgebra admits a quantizationUh̄(g), namely a (topologi-
cal) Hopf algebra overK[[ h̄]] whose specialization at ¯h = 0 is isomorphic toU(g) as
a co-Poisson Hopf algebra; in addition, ifg is quasitriangular andr is its r-matrix, then
such aUh̄(g) exists which is quasitriangular too, as a Hopf algebra, with anR-matrixRh̄(∈
Uh̄(g) ⊗ Uh̄(g)) such thatRh̄ ≡ 1 + rh̄modh̄2 (here one identifies, asK[[ h̄]]-modules,
Uh̄(g) ∼= U(g)[[ h̄]]). Using Drinfeld’squantum duality principle([2]; cf. [12] for a proof),
from any QUEAUh̄(g) with semiclassical limitU(g) one can extract a certain quantum
formal series Hopf algebra (QFSHA)Uh̄(g)

′ such that the semiclassical limit ofUh̄(g)
′
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is F [[g∗]]. In [13], starting from a quasitriangular QUEA(Uh̄(g), R), we showed that, al-
though a prioriR /∈ Uh̄(g)

′ ⊗Uh̄(g)
′ (so that the pair(Uh̄(g)

′, R) is not in general a QTHA),
nevertheless its adjoint actionRh̄ := Ad(Rh̄) : Uh̄(g)⊗Uh̄(g) → Uh̄(g)⊗Uh̄(g), x⊗y �→
Rh̄ · (x ⊗ y) · R−1

h̄ stabilizes the subalgebraUh̄(g)
′ ⊗ Uh̄(g)

′, hence induces by special-
ization an operatorR0 overF [[g∗]] ⊗ F [[g∗]]. Moreover, the properties which makeRh̄

anR-matrix imply thatRh̄ is a braiding operator, hence the same holds forR0. Thus, the
pair (F [[g∗]] ,R0) is a braided Hopf algebra. In particular, this gives us a new method to
produce set-theoretical solutions of the QYBE, thus giving a positive answer to a question
set in[3] (also tackled, for instance, in[6]). Note also that for igniting our construction we
only need a quantization functor(g, r) �→ (Uh̄(g), R), and several of them exist (see[4]).

Secondly, an answer to question(•) was given by Weinstein and Xu in[17]. We briefly
sketch their results. LetG, resp.G∗, be a Poisson group with tangent Lie bialgebrag,
resp.g∗. In addition, assume bothG andG∗ to be complete. LetD be the corresponding
double Poisson group, which is given a structure of symplectic double groupoid, overG

andG∗ at once (further assumptions are needed, seeSection 4later on). Then the authors
prove that there is a classical analogous of the quantumR-matrix, namely a Lagrangian
submanifoldR of D × D, calledthe(global) classicalR–matrix, which enjoys much the
same properties of a quantumR-matrix! Furthermore, for any symplectic leafS in G∗,
thisR induces a symplectic automorphism ofS × S which in turn at the level of function
algebras yields a braiding forF [S]; then, asG∗ is the union of its symplectic leaves, we get
also a braiding onF [G∗] and so, via completion, a braiding onF [[g∗]] too.

As a first goal in this paper, we investigate more in depth the properties of the construction
in [17]. In particular, we show that the step(Uh̄(g), R) �→ (Uh̄(g)

′,Rh̄) is functorial and
preserves quantization equivalence. Since the initial quantization step(g, r) �→ (Uh̄(g), Rh̄)

(provided by[5], but any other would work) is functorial, and of course the final special-
ization step(Uh̄(g)

′,Rh̄) �→ (F [[g∗]] ,R0) is trivially functorial, we conclude that the
whole construction(g, r) �→ (F [[g∗]] ,R0) is functorial too. Moreover, whenever one has
a braiding onF [[g∗]] a so-calledinfinitesimal braidingR̄ is defined on the cotangent Lie
bialgebra ofF [[g∗]]⊗2, which is justg⊕2. If the braiding is the afore mentionedR0, we
prove that the infinitesimal braidinḡR0 is trivial.

As a second goal of the paper, we compare our results with those of[17]. First of all, a
general fact is worth stressing. The purpose in[17] is to find a geometrical counterpart of the
classicalr-matrix, in particular an object which is of global rather than local nature: to this
end, one is forced to impose some additional requirements from scratch, mainly the existence
of complete Poisson groupsG andG∗ with tangent Lie bialgebras respectivelyg andg∗.
In contrast, the approach of[13] sticks to the infinitesimal level: everything is formulated
in terms of Lie bialgebras or formal Poisson groups. Therefore, the final output of[17] is
stronger but requires stronger hypotheses as well. Nevertheless, the additional requirements
in [17] are not necessary if we stick to the infinitesimal setting: indeed, a good deal of the
analysis therein can be carried out as well in local terms—just on germs of Poisson groups—
so that eventually one ends up with results which are perfectly comparable with those of
[13]. Thus we compare the braidingRWX of [17] with the one of[13], call itRGH. Indeed,
one has a theoretical reason to find strong similarities, namely, the construction in[13]
is ageometricquantization of(g, r), whereas the one of[13] passes throughdeformation
quantization. As a matter of fact, first we show that the infinitesimal braidingR̄WX is trivial,
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just like R̄GH. Secondly, wheng = sl2 with the standardr-matrix we prove via explicit
computation thatR̄WX = R̄GH. This raises the question of whetherR̄WX andR̄GH do
always coincide: we give an affirmative answer in a separate paper[18].

The paper is organized as follows.Section 2is devoted to recall some notions and results
of quantum theory.Section 3deals with the construction of braidings via quantum groups,
after [13]: in particular we point out its “compatibility” with the equivalence relation for
quantizations, we prove the triviality of the associated infinitesimal braiding, and we sketch
some examples.Section 4deals with the geometrical construction of braidings after[17]. In
particular we reformulate some results from [loc. cit.] to make them fit with our language,
and we prove that the associated infinitesimal braiding is trivial. Finally,Section 5is devoted
to explicit computation of both̄RWX andR̄GH, which shows they do coincide.

2. Definitions and recalls from quantum group theory

2.1. TopologicalK[[ h̄]] -modules and topological HopfK[[ h̄]] -algebras

LetKbe a fixed field of zero characteristic, ¯han indeterminate. The ringK[[ h̄]] will always
be considered as a topological ring w.r.t. the ¯h–adic topology. LetX be anyK[[ h̄]]-module.
We setX0 := X/h̄X = K ⊗K[[ h̄]] X, a K-module (via scalar restrictionK[[ h̄]] →
K[[ h̄]]/h̄K[[ h̄]] ∼= K) which we call thespecializationof X at h̄ = 0, or semiclassical

limit of X; we shall also use notationX
h̄→0→ Ȳ to meanX0 ∼= Ȳ . For later use, we also set

FX := K((h)) ⊗K[[ h̄]] X, a vector space overK((h)).
Let T⊗̂ be the category whose objects are all topologicalK[[ h̄]]-modules which are

topologically free (i.e.isomorphic toV [[ h̄]] for someK–vector spaceV , with the h̄–adic
topology) and whose morphisms are theK[[ h̄]]-linear maps (which are automatically con-
tinuous). This is a tensor category w.r.t. the tensor productT1⊗̂T2 defined to be the separated
h̄–adic completion of the algebraic tensor productT1 ⊗K[[ h̄]] T2 (for all T1, T2 ∈ T⊗̂).

Let P⊗̃ be the category whose objects are all topologicalK[[ h̄]]-modules isomorphic
to modules of the typeK[[ h̄]]E (the Cartesian product indexed byE, with the Tikhonov
product topology) for some setE. These are complete w.r.t. the weak topology, in fact they
are isomorphic to the projective limit of their finite free submodules (each one taken with
the h̄–adic topology); the morphisms inP⊗̃ are theK[[ h̄]]-linear continuous maps. This
is a tensor category w.r.t. the tensor productP1⊗̃P2 defined to be the completion of the
algebraic tensor productP1 ⊗K[[ h̄]] P2 w.r.t. the weak topology. ThereforePi

∼= K[[ h̄]]Ei

(i = 1, 2) yieldsP1⊗̃P2 ∼= K[[ h̄]]E1×E2 (for all P1, P2 ∈ P⊗̃).
Note that the objects ofT⊗̂ and ofP⊗̃ are complete and separated w.r.t. the ¯h–adic

topology, whence one hasX ∼= X0[[ h̄]] (asK[[ h̄]]-modules) for each of them.
To simplify notation, in the sequel we shall usually write simply⊗ for either⊗̂ or ⊗̃.

Definition 2.1 (cf. [2,3], Section 7).

(a) We call quantized universal enveloping algebra (in short, QUEA) any Hopf algebraH

in the categoryT⊗̂ such thatH0 := H/h̄H is a co-Poisson Hopf algebra isomorphic
to U(g) for some finite-dimensional Lie bialgebrag (over K); in this case we write
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H = Uh̄(g), and sayH is aquantizationof U(g). We callQUEA the subcategory of
T⊗̂ whose objects are QUEA (relative to all possibleg), with the obvious morphisms.

(b) We call quantized formal series Hopf algebra (in short, QFSHA) any Hopf algebra
K in the categoryP⊗̃ such thatK0 := K/h̄K is a topological Poisson Hopf algebra
isomorphic toF [[g]] for some finite-dimensional Lie bialgebrag (over K); then we
write H = Fh̄[[g]], and sayK is aquantizationof F [[g]]. We callQFSHA the full
subcategory ofP⊗̃ whose objects are QFSHA (relative to all possibleg), with the
obvious morphisms.

(c) If H1, H2, are two quantizations ofU(g), resp. ofF [[g]] (for some Lie bialgebrag),
we say thatH1 is equivalent toH2, and we writeH1 ≡ H2, if there is an isomorphism
ϕ : H1 ∼= H2 (inQUEA, resp. inQFSHA) and aK[[ h̄]]-linear isomorphismϕ+ : H1 ∼=
H2 such thatϕ = id + h̄ϕ+ when identifyingH1 andH2 with U(g)[[ h̄]], resp. with
F [[g]][[ h̄]].

Remark 2.2.

(a) Note that the objects ofQUEA and ofQFSHA are topologicalHopf algebras, not
standard ones. As a matter of notation, ifH is any Hopf algebra (maybe topological),
we shall denote bym its product, by 1 its unit element, by∆ its coproduct, byε its
counit and byS its antipode (with a subscriptH if necessary).

(b) If H ∈ HA⊗̂ is such thatH0 := H/h̄H as a Hopf algebra is isomorphic toU(g)
for some Lie algebrag, thenH0 = U(g) is also aco-PoissonHopf algebra, w.r.t. the
Poisson cobracketδ defined as follows. Ifx ∈ H0 andx′ ∈ H givesx = x′ + hH,
thenδ(x) := (h−1(∆(x′)−∆op(x′)))+ hH⊗̂H ; then (by[2,3], Section 3, Theorem 2)
the restriction ofδ makesg into a Lie bialgebra. Similarly, ifK ∈ HA⊗̃ is such that
K0 := K/h̄K is a topological Poisson Hopf algebra isomorphic toF [[g]] for some
Lie algebrag thenK0 = F [[g]] is also a topologicalPoissonHopf algebra, w.r.t. the
Poisson bracket{, } defined as follows. Ifx, y ∈ K0 andx′, y′ ∈ K givex = x′ + hK,
y = y′ +hK, then{x, y} := (h−1(x′y′ − y′x′))+hK; theng is a bialgebra again. These
natural co-Poisson and Poisson structures are the ones considered inDefinition 2.1.

(c) ClearlyQUEA, resp.QFSHA, is atensorsubcategory ofT⊗̂, resp. ofP⊗̃.
(d) We make a finiteness assumption on dim(g), but infinite-dimensional cases can also be

“reasonably” handled as explained in[12, Section 3.9].

2.2. Drinfeld’s functors

Let H be a Hopf algebra (of any type) overK[[ h̄]]. For eachn ∈ N, define∆n : H →
H⊗n by ∆0 := ε, ∆1 := idH , and∆n := (∆ ⊗ id⊗(n−2)

H ) ◦ ∆n−1 if n ≥ 2. Then set
δn = (idH − ε)⊗n ◦ ∆n, for all n ∈ N+. Finally, define

H ′ := {a ∈ H |δn(a) ∈ h̄nH⊗n ∀ n ∈ N} (⊆ H).

Now let IH := ε−1
H (h̄K[[ h̄]]); setH× := ∑

n≥0 h̄−nInH = ∪n≥0(h̄
−1IH)n (⊆ FH), and

H∨ := (separated)h̄-adic completion of theK[[ h̄]]-moduleH×.
The following is the first important result we need the following theorem.
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Theorem 2.3 (The quantum duality principle; cf.[12, Theorem 2.3]). The assignments
H �→ H∨ andH �→ H ′, respectively, define functors of tensor categoriesQFSHA →
QUEA andQUEA→ QFSHA. These functors are inverse to each other. Indeed, for all
Uh̄(g) ∈ QUEA and allFh̄[[g]] ∈ QFSHA one has

Uh̄(g)
′

h̄Uh̄(g)′
= F [[g∗]] ,

Fh̄[[g]]∨

h̄Fh̄[[g]]∨
= U(g∗)

(whereg∗ is the dual tog), i.e. Uh̄(g)
′ = Fh̄[[g∗]] andFh̄[[g]]∨ = Uh̄(g

∗). Moreover, the
functors preserve equivalence, i.e. H1 ≡ H2 impliesH∨

1 ≡ H∨
2 or H ′

1 ≡ H ′
2.

2.3. An explicit description ofUh̄(g)
′

Given any QUEA, sayUh̄(g), we can give a rather explicit description ofUh̄(g)
′. In fact,

one has the following (see[12, Section 3.5]).
Given a basis{x̄1, . . . , x̄d} ofg, there is a lift{x1, . . . , xd} of it in Uh̄(g) such thatε(xi) =

0 and Uh̄(g)
′ is just the topologicalK[[ h̄]]-algebra inP⊗̃ generated(topologically) by

{h̄x1, . . . , h̄xd}; soUh̄(g)
′ = {∑e∈Nd aeh̄

|e|xe|ae ∈ K[[ h̄]] ∀ e} as a subset ofUh̄(g).

Hereafter, we use notationxe := ∏d
i=1 x

ei
i and|e| := ∑d

i=1 ei for all e = (e1, . . . , ed) ∈
N

d .

Definition 2.4 (cf. [1,2,14]).

(a) A Hopf algebraH (in any tensor category) is calledquasitriangularif there isR ∈
H ⊗ H (tensor product within the category), calledtheR-matrix ofH , such that

R · ∆(a) · R−1 = Ad(R)(∆(a)) = ∆op(a), (∆ ⊗ id)(R) = R13R23,

(id ⊗ ∆)(R) = R13R12, (2.1)

where∆op := σ ◦ ∆(a) with σ : H⊗2 → H⊗2, a ⊗ b �→ b ⊗ a, andR12, R13, R23 ∈
H⊗3, R12 = R⊗ 1,R23 = 1⊗R, R13 = (σ ⊗ id)(R23) = (id ⊗ σ)(R12). The algebra
is calledtriangular, and theR-matrixunitary, if in additionR−1 = Rop := σ(R).

We callQTQUEA, resp.TQUEA, the subcategory ofQUEA whose objects are all
the quasitriangular, resp. the triangular, QUEA (in short QTQUEA, resp. TQUEA) and
whose morphismsϕ : H1 → H2 enjoyφ⊗2(R1) = R2.

(b) A Hopf algebraH (in any tensor category) is calledbraided if there is analgebra
automorphismR : H ⊗H → H ⊗H in the category, calledthe braiding operator(or
simply the braiding) of H , different fromσ : a ⊗ b �→ b ⊗ a and such that

R ◦ ∆ = ∆op, (∆ ⊗ id) ◦R = R13 ◦R23 ◦ (∆ ⊗ id),

(id ⊗ ∆) ◦R = R13 ◦R12 ◦ (id ⊗ ∆), (2.2)

whereR12,R13,R23 are the automorphisms ofH⊗3 defined byRe12 = R ⊗ id,
R23 = id ⊗R,R13 = (σ ⊗ id) ◦ (id ⊗R) ◦ (σ ⊗ id). Moreover, the braiding operator
is said to beunitaryand the algebra to berigid if in additionR−1 = σ ◦R ◦ σ.



F. Gavarini, G. Halbout / Journal of Geometry and Physics 46 (2003) 255–282 261

We callBQFSHA, resp.RBQFSHA, the subcategory ofQFSHA whose objects
are all the braided, resp. the rigid braided, QFSHA (in short BQFSHA, resp. RBQFSHA)
and whose morphismsψ : H1 → H2 enjoyψ⊗2 ◦R1 = R2 ◦ ψ⊗2.

(c) Let (H1, R1), (H2, R2) ∈ QTQUEA. We say that(H1, R1) is equivalent to(H2, R2),
and we write(H1, R1) ≡ (H2, R2), if H1 ≡ H2 inQUEA via an equivalenceϕ : H1 ∼=
H2 which is also an isomorphism inQTQUEA (i.e. such thatφ⊗2(R1) = R2).

(d) Let(H1,R1), (H2,R2) ∈ BQFSHA. We say that(H1,R1) is equivalent to(H2,R2),
and we write(H1,R1) ≡ (H2,R2), if H1 ≡ H2 inQUEA via an equivalence which is
also an isomorphism inBQFSHA (i.e. such thatψ⊗2 ◦R1 = R2 ◦ ψ⊗2).

Remark 2.5.

(a) It follows immediately from(2.1) that R is a solution of the quantum Yang–Baxter
equation(in short, QYBE) in H⊗3, namelyR12R13R23 = R23R13R12. This is the
starting point for defining a braid group action on the tensor products ofH-modules,
and then for constructing link invariants, following[16] (see also[1, Section 15]).

Similarly, it follows from(2.2)thatR is a solution of the QYBE in End(H⊗3), namely
R12◦R13◦R23 = R23◦R13◦R12. Again, this implies the existence of a braid group
action on the tensor powers ofH , from which one can start a search for link invariants.

(b) It is proved in[5] that, for any Lie bialgebrag, there exists a QUEA, which we’ll
denoteUh̄(g), whose semiclassical limit is isomorphic toU(g); moreover, one has an
identificationUh̄(g) ∼= U(g)[[ h̄]] as K[[ h̄]]-modules, hence alsoUh̄(g) ⊗ Uh̄(g) ∼=
(U(g) ⊗ U(g))[[ h̄]]. Here, like elsewhere in the following, the tensor products among
K[[ h̄]]-modules are topological tensor products. In addition, ifg is quasitriangular—as
a Lie bialgebra (cf.[1])—andr is its r-matrix, then there exists such aUh̄(g) which is
quasitriangular as well—as a Hopf algebra—with anR-matrixRh̄(∈ Uh̄(g) ⊗ Uh̄(g))
such thatRh̄ ≡ 1 + h̄r|h̄2, that is to sayRh̄ = 1 + h̄r + O(h̄2) with O(h̄2) ∈
h̄2 · Uh̄(g) ⊗ Uh̄(g).

3. Braidings from deformation quantization

Theorem 3.1 ([14, Théorème 2.1]). LetH be a QTQUEA, and letR be itsR-matrix. Then
the inner automorphismAd(R) : H ⊗H → H ⊗H ofH ⊗H restricts to an automorphism
of H ′ ⊗ H ′, and the pair(H ′,Ad(R)|H ′⊗H ′) is a BQFSHA.

As a first goal in this section we provide some further details aboutTheorem 3.1.

Theorem 3.2.

(a) The functor( )′ : QUEA→ QFSHA yields by restriction two functors

( )′ : QTQUEA→ BQFSHA, (H,R) �→ (H ′,Ad(R)|H ′⊗H ′),

( )′ : TQUEA→ RBQFSHA, (H,R) �→ (H ′,Ad(R)|H ′⊗H ′ .
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(b) The functors in(a)preserve equivalence classes, i.e. if(H1, R1) ≡ (H2, R2) inQTQUEA
then(H ′

1,Ad(R)|H ′
1⊗H ′

1
) ≡ (H ′

2,Ad(R)|H ′
2⊗H ′

2
) in BQFSHA.

Proof.

(a) Theorem 3.1tells that the functor( )′ : QTQUEA → BQFSHA is well-defined on
objects. Moreover, ifφ : (H1, R1) → (H2, R2) is a morphism inQTQUEA then
φ⊗2(R1) = R2, whenceφ⊗2 ◦ Ad(R1)|(H ′

1)
⊗2 = Ad(R2)|(H ′

2)
⊗2 ◦ φ⊗2 follows at

once, henceφ′ := φ|H ′
1

: H ′
1 → H ′

2 is a morphism inBQFSHA. In addition, if

(H,R) ∈ TQUEA thenR−1 = σ(R) yields (Ad(R)|(H ′)⊗2)−1 = Ad(R−1)|(H ′)⊗2 =
Ad(σ(R))|(H ′)⊗2 = σ ◦ Ad(σ(R))|(H ′)⊗2 ◦ σ, hence Ad(σ(R))|(H ′)⊗2 is unitary, q.e.d.

(b) This follows easily from (a) and the very definitions. �

Secondly, as a consequence ofTheorem 3.1along with the existence of quasitriangular
quantization of any quasitriangular Lie bialgebra (cf.[5]) one gets a braiding onF [[g∗]].

Corollary 3.3 ([14, Théorème 3.2]). Let g be a( finite-dimensional) quasitriangular Lie
bialgebra. Then the topological Poisson Hopf algebraF [[g∗]] is braided(in particular, its
braiding is a Poisson automorphism). Moreover, there is a quantization ofF [[g∗]] which
is a braided Hopf algebra whose braiding operator specializes into that ofF [[g∗]].

3.1. The triviality of the infinitesimal braiding

Let g andg∗ be finite-dimensional Lie bialgebras dual to each other. AssumeF [[g∗]] is
braided (as a Poisson Hopf algebra),R being its braiding (which is a Poisson automorphism
also). Letm⊗

e be the (unique) maximal ideal ofF [[g∗⊕g∗]] = F [[g∗]]⊗F [[g∗]] (topological
tensor product, after[2,3], Chapter 1). SinceR is an algebra automorphism,R(m⊗

e ) = m⊗
e

andR induces an automorphism̄R of the vector spacem⊗
e /(m⊗

e )2. Now,m⊗
e /(m⊗

e )2 with
the Lie bracket induced by the Poisson bracket ofF [[g∗⊕g∗]] identifies with the Lie algebra
g⊕g; sinceR is also an automorphism of Poisson algebras, the mapR̄ is an automorphism
of the Lie algebrag ⊕ g; of courseR̄ inherits also other properties of the braidingR, in
particularR andR̄ are solutions of the QYBE, hence we call itthe infinitesimal braiding
associated toR.

Now assume in addition thatg be quasitriangular, and the braidingR on F [[g∗]] is
provided as inCorollary 3.3. Namely, let(Uh̄(g), R) ∈ QTQUEA be a quantization of the
quasitriangular Lie bialgebra(g, r): by definition, this means thatUh̄(g) has semiclassical
limit (i.e. specialization at ¯h = 0) the co-Poisson Hopf algebraU(g)and, in the identification
Uh̄(g) = U(g)[[ h̄]] (as topologicalK[[ h̄]]-modules),R = 1 + h̄r + O(h̄2) for some
O(h̄2) ∈ h̄2U(g)[[ h̄]]. ThenR is the braiding ofF [[g∗ ⊕ g∗]] = Uh̄(g)

′ ⊗ Uh̄(g)
′ modh̄

which is obtained as specialization at ¯h = 0 of Ad(R)|Uh̄(g)′⊗Uh̄(g)′ , thanks toTheorem 3.1.
Then our next result is that the associated infinitesimal braidingR̄ is always trivial.

Theorem 3.4. The infinitesimal braidinḡR : g⊕ g→ g⊕ g is trivial, i.e. R̄ = idg⊕g.
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Proof. Let {x̄1, . . . , x̄d} be a basis ofg, and pick a lift{x1, . . . , xd} of it in Uh̄(g) as ex-
plained inSection 2.3, so thatUh̄(g)

′ = {∑e∈Nd aeh̄
|e|xe = ∑

e∈Nd aex̃
e|ae ∈ K[[ h̄]] ∀ e},

wherex̃i := h̄xi (for all i) are topological generators ofUh̄(g)
′. ThenUh̄(g)

′ ⊗ Uh̄(g)
′ is

generated by the1x̃i := x̃i ⊗ 1 and the2x̃i := 1 ⊗ x̃i, for all i. On the other hand, one
hasUh̄(g) = K[x1, . . . , xd ][[ h̄]] as topologicalK[[ h̄]]-modules, whenceUh̄(g)⊗Uh̄(g) =
(K[1x1, . . . , 1xd, 2x1, . . . , 2xd ])[[ h̄]]. Then we have an ¯h–adic expansion ofR and ofR−1,
namelyR = ∑

n≥0 P+
n (1x; 2x)h̄

n, R−1 = ∑
m≥0 P−

m(1x; 2x)h̄
m for some polynomials

P+
n (1x; 2x) = P+

n (1x1, . . . , 1xd; 2x1, . . . , 2xd), P−
m(1x2x) = P−

m(1x1, . . . , 1xd; 2x1, . . . ,

2xd). Now, the conditionR = 1⊗ + h̄r +O(h̄2) (with 1⊗ := 1⊗ 1) forcesP+
0 = 1 = P−

0 ,
P+

1 = ∑
i,j ci,j · 1xi2xj = −P+

1 for someci,j ∈ K such thatr = ∑
i,j ci,j · x̄i ⊗ x̄j. In

addition, anyR-matrix enjoys(ε⊗ id)(R) = 1 = (id ⊗ ε)(R), hence also(ε⊗ id)(R−1) =
1 = (id ⊗ ε)(R−1); settingP± := R±1 − 1, this implies(ε⊗ id)(P±) = 0 = (id ⊗ ε)(P±).

Now, for all ) consider(Ad(R))(1x̃)) = R · 1x̃) · R−1: we have

(Ad(R))(1x̃)) = R · 1x̃) · R−1 = (1 + P+) · 1x̃) · (1 + P−)

= 1x̃) + P+ · 1x̃) + 1x̃) · P− + P+ · 1x̃) · P−. (3.1)

We know that this element belongs to(Uh̄(g)⊗Uh̄(g))
′ = K[[ 1x̃1, . . . , 1x̃d, 2x̃1, . . . , 2x̃d, h]],

so we can write it as a series; since(ε ⊗ id)(P±) = 0 and(ε ⊗ id) is a morphism we have
(ε⊗ id)(P+ · 1x̃) + 1x̃) ·P− +P+ · 1x̃) ·P−) = 0. Recalling thatε(1x̃)) = 0 this means that

P+ · 1x̃) + 1x̃) · P− + P+ · 1x̃) · P− =
∑

e(1),e(2)∈Nd

ae(1),e(2)1x̃
e(1)

2x̃
e(2)

(whereae(1),e(2) ∈ K[[ h̄]] for all e(1), e(2)) with ae(1),0 = 0 = a0,e(2) for all e(1), e(2), thus

P+ · 1x̃) + 1x̃) · P− + P+ · 1x̃) · P− =
∑

|e(1)|,|e(2)|>1

ae(1),e(2)1x̃
e(1)

2x̃
e(2) . (3.2)

Now1x̃
e(1) , 2x̃

e(2) modh̄(Uh̄(g)
⊗2)′ belong tom⊗

e (notation ofSection 3.1) as soon as|e(1)| >
1, |e(2)| > 1; so(3.2)gives

(P+ · 1x̃) + 1x̃) · P− + P+ · 1x̃) · P−) ≡ 0 modh̄ (Uh̄(g)
⊗2)′ ∈ (m⊗

e )2

and this along with(3.1)yields (for all) = 1, . . . , d)

R((1x̃) modh̄(Uh̄(g)
⊗2)′)mod(m⊗

e )2)

= ((Ad(R))(1x̃))modh̄(Uh̄(g)
⊗2)′)mod(m⊗

e )2

= (1x̃) modh̄(Uh̄(g)
⊗2)′)mod(m⊗

e )2.

Similarly one gets (for all) = 1, . . . , d)

R((2x̃) mod h̄(Uh̄(g)
⊗2)′) mod(m⊗

e )2) = (2x̃) mod h̄(Uh̄(g)
⊗2)′) mod(m⊗

e )2.

Letting sx̌) := (sx̃) mod h̄(Uh̄(g)
⊗2)′) mod(m⊗

e )2 ∈ m⊗
e /(m⊗

e )2 = g⊕ g (for all s = 1,2
and ) = 1, . . . , d), we have in shortR(sx̌)) = sx̌) for all s, ). Since thesx̃) generate
(Uh̄(g)

⊗2)′, thesx̌) spang⊕ g, hence we can conclude thatR is trivial, as claimed. �
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3.2. The example of semisimple and (untwisted) affine cases

In [8,9,14] the adjoint action of theR-matrix of the Jimbo–Lusztig’s quantum groups
Uq(g) was studied. In this section we briefly outline how the results therein can be read as
special occurrences of the ones cited here, namely the existence of braidings onUh̄(g).

Let g = gτ be a semisimple Lie algebra, i.e. a finite type Kac–Moody algebra, endowed
with the Lie cobracket—depending on the parameterτ—given in[10, Section 1.3], which
makes it into a Lie bialgebra; in the following we shall also retain from [loc. cit.] all
the notation we need: in particular, we denote byQ, resp.P , the root lattice, resp. the
weight lattice, ofg, and byr the rank ofg. In particular, whenτ = 0 we have the standard
Sklyanin–Drinfeld cobracket. Similarly,gmay be any untwisted affine Kac–Moody algebra,
as in[11] (with corresponding notation).

Now setq := exp(h); thenK(q) is a subring ofK[[ h̄]], hence also all its subrings are.
Let Uq(g) be the Jimbo–Lusztig’s quantum group overK(q), defined asUq(g) := U

Q
q,ϕ(g)

as in[10, Section 3.3], if g is finite, and asUq(g) := U
Q
q (g) as in[11, Section 3.3], if g

is affine. Furthermore, let̂Uq(g) be the integer form ofUq(g) defined asÛq(g) := UQ
ϕ (g)

(overA := K[q, q−1]) as in [10, Section 3.3], if g is finite, and aŝUq(g) := UQ(g) (over
the ringA of rational functions inq having no poles at roots of unity of odd order) as in
[11, Section 3.3], if g is affine. In both casesA is a subring ofK(q), hence ofK[[ h̄]], thus
we can define

Uh̄(g) := (separated)h̄-adic completion ofK[[ h̄]] ⊗A Ûq(g). (3.3)

It is well known thatÛq(g)/(q − 1)Ûq(g) ∼= U(g): this and(3.3) imply that Uh̄(g) has
semiclassical limitU(g), thus it is a QUEA. In fact,Uh̄(g) is the well known Drinfeld
quantum group overK[[ h̄]], as defined in[2, Section 6]. In addition, let alsoŨq(g) be

the integer form ofUq(g) defined asŨq(g) := UQϕ (g) (overA := K[q, q−1]) as in [10,
Section 3.3], if g is finite, and asŨq(g) := UQ(g) (over the ringA above) as in[11,
Section 3.3], if g is affine.

Similarly, we do the same for the dual Lie bialgebrag∗ (denotedh in [loc. cit.]), following
[10, Section 6]—in the finite case—or[12, Section 5]—in the affine case, thus getting
Uq(g

∗), Ûq(g
∗), Ũq(g

∗), andUh̄(g
∗), the last one being a QUEA withU(g∗) as semiclassical

limit. From the description in[10,11], one sees that these objects are quite similar to the
corresponding ones related tog.

Now considerÛq(g)
∗ := HomA(Ûq(g), A); from [10,11] we have the identification

Û∗
q (g)

∼= Ũq(g
∗), and alsoŨq(g

∗)
q→1→ Ũq(g

∗)/(q − 1)Ũq(g
∗) ∼= F [[g]]. Thus letting

Fh̄[[g]] := (separated) h̄-adic completion ofK[[ h̄]] ⊗A Ũq(g
∗) (3.4)

we have thatFh̄[[g]] is a QFSHA, with semiclassical limitF [[g]].
The natural Hopf pairing〈, 〉 : Ũq(g

∗)×Ûq(g) → A yields a Hopf pairing〈, 〉 : Fh̄[[g]] ×
Uh̄(g) → K[[ h̄]]; moreover, it extends similarly to a perfect pairing〈, 〉 : Uq(g

∗)×Uq(g) →
K(q). The analysis in[10,11]shows that

Ũq(g) = (Ûq(g
∗))◦ := {y ∈ Uq(g)|〈Ûq(g

∗), y〉 ⊆ A}. (3.5)
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In addition, by Proposition 1.4 we have also

Uh̄(g)
′ = (Fh̄[[g]]∨)◦ := {y ∈ FUh̄(g)|〈Fh̄[[g]]∨, y〉 ⊆ K[[ h̄]]},

where we consider〈, 〉 : FFh̄[[g]] × FUh̄(g) → K((h)) to be the obvious pairing obtained
by scalar extension from〈, 〉 : Fh̄[[g]] × Uh̄(g) → K[[ h̄]].

Now, the very definitions of all the objects involved yield (via the analysis in[10,11])

Fh̄[[g]]∨ = ((separated)h̄-adic completion ofK[[ h̄]] ⊗A Ũq(g
∗))∨

= (separated)h̄-adic completion ofK[[ h̄]] ⊗A Ûq(g
∗) = Uh̄(g

∗).

This and(3.5) together give

Uh̄(g)
′ = (separated)h̄-adic completion ofK[[ h̄]] ⊗A Ũq(g). (3.6)

This gives us a concrete description ofUh̄(g)
′. If Uh̄(g) is topologically generated—as

usual—by Chevalley-like generatorsFi, Hj, Ei (for i andj in some set of indicesI andJ ,
depending on the type ofg) and if theFα’s, resp.Eα’s, are (quantum) root vectors attached
to the positive, resp. negative, roots ofg (like, for instance, in[10,11]), thenUh̄(g)

′ is the
unital topological subalgebra ofUh̄(g) topologically generated by the set{Ḟα, Ėα}α∪{Ḣj}j
with Ḟα := h̄Fα, Ėα := h̄Eα, Ḣj := h̄Hj for all α and allj.

Having this description in our hands, we can recognize that Theorem 2.3 in this case is
also proved in[8, Theorem 4.4](or simply Corollary 3.8, forc = 1), for the finite case, and
in [9], Corollary 2.5 (b), for the affine case.

4. Braidings from geometric quantization: Weinstein and Xu’s approach

4.1. The (global) classicalR-matrix (cf.[17] )

In this section we recall from[17] the construction of the globalR-matrix and point out
how it provides a braiding.

From now on, letK ∈ {R,C}. Let (g, r) be a (finite-dimensional) quasitriangular Lie
bialgebra, and writer = ∑

i r
+
i ⊗ r−i ∈ g⊗ g. Define linear maps

r± : g∗ → g∗∗ = g, r±(η) := ±
∑
i

η(r±i ) · r∓i ∀ η ∈ g∗. (4.1)

These are both Lie algebra homomorphisms; if(g, r) is triangular, thenr+ = r−.
LetG be a complete Poisson–Lie group, and assume a dual Poisson–Lie groupG∗ exists;

in general,only a germof such a group is defined; then their tangent Lie bialgebrasg and
g∗ are dual to each other. We say thatG is quasitriangularif g is quasitriangularand if the
Lie algebra homomorphismsr± : g∗ → g defined abovelift to Lie group homomorphisms
R± : G∗ → G. In this case, we define

φψ : G∗ → G, φ(x) := R+(x−1), ψ(x) := R−(x−1) ∀ x ∈ G∗. (4.2)

These are both Poisson morphisms; ifG is triangular (i.e. the like is true forg) thenR+ =
R−, henceφ = ψ.
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We shall use the following conventions fordressing transformations. The left and right
dressing transformation ofG onG∗ are denoted, respectively, byλgu andρgu for all g ∈ G

andu ∈ G∗. Similarly, we denote the left and right dressing transformation ofG∗ onG by
λug andρug for all u ∈ G∗ andg ∈ G.

By definition, theglobal classicalR–matrix is

R := {(ψ(v−1), u, φ(λψ(v−1)u), v)|u, v ∈ G∗} = {(ψ(v−1), u, ρv−1φ(u), v)|u, v∈G∗}
which is a Lagrangian submanifold ofD × D. It is shown in[17], how this object enjoys
a bunch of properties which are exactly the analogous of those of a quantumR-matrix; in
addition, ifG is triangular, thenR is unitary, by which we mean thatRop = R−1 (in the
sense of[17], Remark 8.3). Moreover, these properties imply the following result.

Theorem 4.1 (cf. [19, Corollary 7.2]). If G is a complete quasitriangular Poisson–Lie
group, then the mapR = RWX : G∗ × G∗ → G∗ × G∗ given by

(u, v) �→ (λψ(v−1)u, λφ(λ
ψ(v−1)u)

v) = (λψ(v−1)u, ρφ(u−1)v) ∀ u, v ∈ G∗

is a Poisson diffeomorphism such that

m ◦R = mop, R ◦ (m ⊗ id) = (m ⊗ id) ◦R23 ◦R13,

R ◦ (id ⊗ m) = (id ⊗ m) ◦R12 ◦R13, (4.3)

wherem is the product ofG∗ andmop := m ◦ σ (with σ as in Section1.8). In particular,
R is a solution of the QYBE, and it restricts to a similar mappingS × S → S × S for
every symplectic leafS ofG∗. In addition, if G is triangular thenR is unitary, which means
R−1 = σ ◦R ◦ σ.

Proof. It is just a matter of recalling or reformulating some results of[17]. The identity in
the first line of(4.3) is proved by Theorem 5.1 in [loc. cit.]; the second line of identities
instead is a simple reformulation of Theorem 5.4 in [loc.cit.]; finally, in the triangular case
the unitarity ofR follows from the unitarity of the globalR-matrixR, by Corollary 8.2
and Remark 8.3 in [loc. cit.]. �

Corollary 4.2. The mapping

RWX := R∗ : F [G∗] ⊗ F [G∗] = F [G∗ × G∗] → F [G∗ × G∗] = F [G∗] ⊗ F [G∗]

naturally induced byR is a braiding, which is unitary ifR is. In particular, this canonically
induces a braidingRWX : F [[g∗ ⊕ g∗]] → F [[g∗ ⊕ g∗]]. Furthermore, the associated
infinitesimal braidingR̄WX : g⊕ g→ g⊕ g (cf. Section 3.1) is trivial, i.e. R̄WX = idg⊕g.

Proof. The first part of the claim—RWX being a braiding, unitary ifRWX is—follows
trivially from Theorem 4.1by duality; thenRWX automatically induces an infinitesimal
braidingR̄WX as well.

To prove the second part—that is,R̄WX being trivial—we must go back to the definition
and the properties of dressing actions. Recall that the left dressing action ofG on G∗ is
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defined as follows. For allg ∈ G, γ ∈ G∗, there exist uniquegγ ∈ G, γg ∈ G∗ such that
g · γ = γg · gγ ; then the left dressing actionλ : G × G∗ → G∗ of G on G∗ is given by
λg(γ) ≡ λ(g, γ) := γg, for all g ∈ G, γ ∈ G∗.

Now, for allX ∈ g, Y ∈ g∗ andt ∈ R, we have

exp(tX)exp(tY) = exp(tY)exp(tX) exp(t X)exp(tY),

whence Taylor expansion gives

exp(tY)exp(tX) =
(
1 + tY+ t2 1

2(Y
2) + · · ·

)(1+tX+t2X2/2+··· )

= 1 + tY+ t2YX + · · · + t2 1
2(Y

2) + · · · ,

(whereYX denotes the action ofX ontoY induced at the infinitesimal level by the dressing
action), hence at first order int we have simplyY ! Applied to the situation exp(tX) = ψ(v−1),
exp(tY) = u this says that the first entry ofT(e,e)(RWX)(Y, V) is justY (hereV := log(v),
ande denotes the unit element ofG∗). Similarly, carrying out a like analysis on the right
dressing action we get that the second entry ofT(e,e)(RWX)(Y, V) is simplyV . Therefore,
T(e,e)(RWX) = idg∗⊕g∗ . As R̄WX is just the dual ofT(e,e)(RWX), it is trivial as well,
q.e.d. �

4.2. The factorizable case

Let (g, r) be a quasitriangular Lie bialgebra. If the bilinear form ong ⊗ g naturally
associated tor + rop is non-degenerate, then(g, r) is said to befactorizable. In this case,
the corresponding linear mapj := r+ − r− : g∗ → g is invertible. Now letG be a
Poisson–Lie group corresponding to the Lie bialgebra above, and letG∗ be its connected,
simply connected Poisson dual. The Lie algebra morphismsr± : g∗ → g lift to group
morphismsR± : G∗ → G, thus we may define the mapJ : G∗ → G by J(u) :=
R+(u)R−(u)−1 (for all u ∈ G∗) whose derivative at the identity elementu ∈ G∗ is j (note
that neitherj nor J is a morphism). WhenJ is a global diffeomorphism, we say thatthe
groupG is factorizable, since for eachg ∈ G we have the factorizationg = g+g−1

− , where
g± := R±(J−1(g)). Thanks to[19, Proposition 9.1], any connected, simply connected,
factorizable Poisson–Lie group is complete.

Now, factorizability enables us to describe the classicalR-matrix quite explicitly.

Theorem 4.3 (cf. [19, Theorem 9.2]). LetG be a factorizable Poisson–Lie group, and use
J : G∗ → G to identifyG∗ with G (hence alsoG × G with G∗ × G∗). Then:

(a) the(global) classicalR–matrixR ∈ (G × G) × (G × G) takes the form

R = {(y−, x, (y−xy−1
− )−1

+ , y)|∀ x, y ∈ G};
(b) the mapR = RWX : G × G → G × G of Theorem 4.1is given by

RWX(x, y) = (y−xy−1
− , (y−xy−1

− )−1
+ y(y−xy−1

− )+1
+ ) ∀ (x, y) ∈ G × G.

Remark 4.4. As we pointed out in the Introduction, one can carry over the construction
of Weinstein and Xu in purely local terms, just performing it on the germ of Poisson group
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underlying the quasitriangular Lie bialgebra(g, r), and eventually get a braidingRWX :
F [[g∗⊕g∗]] → F [[g∗⊕g∗]] and an associated infinitesimal braidingR̄WX : g⊕g→ g⊕g.
Our next result is that the latter is always trivial whenever(g, r) is factorizable.

Proposition 4.5. Let the quasitriangular Lie bialgebra(g, r) be factorizable. Then the
infinitesimal braidingR̄WX : g⊕ g→ g⊕ g is trivial, i.e. R̄WX = idg ⊕ g.

Proof. Let Gloc be the germ of Poisson group associated to the Lie bialgebrag. Then the
“local” version ofTheorem 4.3(b) ensures that the mapRWX : Gloc×Gloc → Gloc×Gloc
is given byRWX(x, y) = (y−xy−1

− , (y−xy−1
− )−1

+ y(y−xy−1
− )+1

+ ) for all x, y ∈ Gloc. Now, for
all A, B ∈ g andt ∈ R we have

exp(tA)exp(tB)exp(tA)−1

=
(
1 + tA + t2 1

2(A
2) + · · ·

) (
1 + tB+t2 1

2(B
2)+ · · ·

) (
1 − tA+t2 1

2(A
2) − · · ·

)
= 1 + tB + t2 1

2((2(AB− BA) + B2)) + · · · .

Applying this recipe toA = log(y−), B = log(x), and looking at first order (int) we find
out that the first entry ofT(e,e)(RWX)(x, y) is justx; similarly we get that the second entry
of T(e,e)(RWX)(x, y) is y. ThusT(e,e)(RWX) is the identity, and sincēRWX is just its dual,
it is the identity as well, q.e.d. �

5. Comparing the braidingsRWX andRGH: the case of g = sl2

5.1. The general problem

We noticed that the construction of[17] can be performed for any quasitriangular Lie
bialgebra by acting locally, so to get a braidingRWX on the dual formal Poisson group,
exactly like one can do following[13] to get a braidingRGH. Since these braidings share
similar properties—like functoriality and infinitesimal triviality, for instance—we are led
to raise the following.

Question. Given any quasitriangular Lie bialgebrag, do the braidingsRWX andRGH on
F [[g∗]] coincide?

The purpose of the present section is to provide a positive answer to this question for the
simplest case ofg = sl2(C). The general case is tackled and solved in[13].

5.2. The geometrical setting

In this section, letK = C. Let G := SL2 ≡ SL2(C). Its tangent Lie algebrag = sl2 is
generated byf , h, e (theChevalley generators) with relations [h, e] = 2e, [h, f ] = −2f ,
[e, f ] = h. The formulæδ(f) = (f ⊗ h − h ⊗ f)/2, δ(h) = 0, δ(e) = (e ⊗ h − h ⊗ e)/2,
define a Lie cobracket ong. Indeed, this makessl2 into a quasitriangular Lie bialgebra,
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whoser-matrix is r := e ⊗ f + (h ⊗ h)/4. This corresponds to a structure of complex
Poisson–Lie (actually,algebraic) group onG, which is complete and quasitriangular.

In the dual Lie bialgebrag∗ = sl∗2, let {e∗, f ∗, h∗} be the basis dual to{e, f, h}, and
consider the basis{e := e∗, f := f ∗,h := −2h∗}. Then the Lie bialgebra structure ofsl∗2
is described by the formulæ [h,e] = e, [h, f] = f, [e, f] = 0, andδ(f ) = h ⊗ f − f ⊗ h,
δ(h) = 2(f ⊗ e− e⊗ f ), δ(e) = e⊗ h− h⊗ e. Thensl∗2 can be realized as the Lie algebra
of pairs of matrices

sl∗2 =
{((

−t 0

c t

)
,

(
t b

0 −t

))∣∣∣∣∣ b, c, t ∈ K

}
⊆ sl2 × sl2 (5.1)

(with the Lie subalgebra structure insidesl2 × sl2). It follows that the unique connected
simply connected complex Poisson–Lie (actually,algebraic) group whose tangent Lie bial-
gebra issl∗2 can be realized as the group of pairs of matrices (the left subscripts meaning
“simply connected”)

sSL∗
2 =

{((
z−1 0

y z

)
,

(
z x

0 z−1

))∣∣∣∣∣ x, y ∈ K, z ∈ K \ {0}
}

⊆ SL2 × SL2 (5.2)

(with the subgroup structure inside SL2 × SL2); this group has a “small” center, namely
Z := {(I, I), (−I,−I)}, so there is only one other (Poisson) group sharing the same Lie
(bi)algebra, namely the quotientaSL∗

2 := sSL∗
2/Z (the adjoint ofsSL∗

2, as the left subscripta
means). ThereforeF [sSL∗

2] is the unital associative commutativeK-algebra with generators
x, z±1, y, with Poisson Hopf structure given by

∆(x) = x ⊗ z−1 + z ⊗ x, ∆(z±1) = z±1 ⊗ z±1, ∆(y) = y ⊗ z−1 + z ⊗ y,

ε(x) = 0, ε(z±1) = 1, ε(y) = 0,

S(x) = −x, S(z±1) = z∓1, S(y) = −y,

{x, y} = z−2 − z+2, {z±1, x} = ∓1
2xz±1, {z±1, y} = ±1

2z
±1y.

(N.B.: with respect to this presentation, we have f= ∂y|u, h = (z/2)∂z|u, e = ∂x|u,
whereu is the identity element ofsSL∗

2). Moreover,F [aSL∗
2] can be identified with the

Poisson Hopf subalgebra ofF [sSL∗
2] spanned by products of an even number of generators,

i.e. monomials of even degree. This is generated as a unital subalgebra, byxz, z±2, andz−1y.
Finally, the (algebra of regular functions on the) Poisson algebraic formal groupF [[sl∗2]]
is the Ker(ε)–adic completion of bothF [sSL∗

2] and F [aSL∗
2]; in the first case Ker(ε) is

generated (as an ideal) byx, (z±1 − 1) andy, thereforeF [[sl∗2]] = K[[x, (z − 1), y]] as a
topologicalK-algebra (note thatz−1 − 1 = ∑

n>0(−1)n(z− 1)n, so the generatorz−1 − 1
is superfluous) with the unique Poisson Hopf structure which extends by continuity the one
onF [sSL∗

2].

5.3. Weinstein and Xu’s construction

In the framework ofSection 5.2let G := SL2, G∗ := sSL∗
2. In this section we compute

the braidingRWX for G; despite the fact that not all requirements of[17] are fulfiled, we
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can show that that construction can still be carried out at the local level: to fulfill this goal
is then just a matter of matrix computation.

It follows from definitions—cf.[19, Section 9]—that the mapsr± : g∗ → g are given
by r+(e) = 2f, r+(h) = −h/2, r+(f ) = 0, r−(e) = 0, r−(h) = +h/2, r−(f ) = −2e,
and the mapsR± : G∗ → G are, respectively, the projection to the second and the first
factor w.r.t. to the description ofG∗ = sSL∗

2 in (5.2). Then for the mapsj : g∗ → g and
J : G∗ → G defined inSection 4.2we have thatj is bijective butJ is not, for it has kernel
Ker(J) = Z (hence it is a 2–to–1 map) and image

Im(J) = G0 :=
{(

a b

c d

)∣∣∣∣∣ a, b, c, d ∈ C, d %= 0

}

that is thebig cellof G = SL2: in fact,J is an unramified 2-fold covering ofG0. Therefore,
J is not a global diffeomorphism, but it factors to a global diffeomorphism

Ja : aG
∗ ≡ aSL∗

2 := sSL∗
2

Z

&→G0

given byJa(g · Z) := J(g) for all g ∈ sSL∗
2. We need a section ofJ and ofJa. Since

J

((
A−1 0

B A+1

)
,

(
A+1 C

0 A−1

))

=
(

A+1 C

0 A−1

)
·
(

A+1 0

−B A−1

)
=
(

A+2 − BC A−1C

−A−1B A−2

)

we haveJ

((
A−1 0

B A+1

)
,

(
A+1 C

0 A−1

))
=
(

a b

c d

)
if and only if

A = ±d−1/2, B = ±bd−1/2, C = ∓cd−1/2 (5.3)

for any matrix
(
a b
c d

)
∈ G0; these formulæ clearly define two differentiable sections of

J (taking either upper or lower signs) and one ofJa (for which the sign is irrelevant).

Remark. AlthoughG is not factorizable, nevertheless we can still useTheorem 4.3(b) to
compute the mapRWX, namely

RWX(X′, Y ′) = (J−1(Y−XY−1
− ), J−1((Y−XY−1

− )−1
+ Y(Y−XY−1

− )+1
+ )) (5.4)

for all (X′, Y ′) ∈ G∗ × G∗ and(X, Y) := (J(X′), J(Y ′)) ∈ G × G, whereJ−1 is one of
the two aforesaid sections ofJ , namely the unique one such that the resultingRWX(X′, Y ′)
map(eG∗ , eG∗) onto itself. In fact, althoughJ is not a diffeomorphism it is nevertheless
a (finite) covering onG0, hence it is alocal diffeomorphism(around the identity element
eG∗ ∈ G∗) onG0, therefore the description ofRWX(X′, Y ′) afforded byTheorem 4.3(b),
throughJ and a local sectionJ−1, is still available (locally around(eG∗ , eG∗) ∈ G∗ ×G∗).
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To have aglobal description, one has just to choose the unique sectionJ−1 which maps
eG0 = eG ontoeG∗ . Therefore, we shall now go on computingRWX following this strategy.

Let X := J

((
z−1 0

y z

)
,

(
z x

0 z−1

))
, Y := J

((
ζ−1 0

η ζ

)
,

(
ζ χ

0 ζ−1

))
∈ J(G∗)

= G0. Then we have

Y− · X · Y−1
− =

(
ζ−1 0

η ζ

)(
z x

0 z−1

)(
z 0

−y z−1

)(
ζ 0

−η ζ−1

)

=
(

ζ−1 0
η ζ

)(
z2 − xy z−1x

−z−1y z−2

)(
ζ 0

−η ζ−1

)

=
(

z2 − xy− ηζ−1xz−1 ζ−2z−1x

ηζz2 − (ηζ−2ζ + yz−1ζ+2)Θ2 z−2Θ2

)

with Θ := (1 + ηxzζ−1)1/2. Using(5.3)we get from this

(Y−XY−1
− )+ = ±

(
z+1Θ−1 xζ−2Θ−1

0 z−1Θ+1

)

(Y−XY−1
− )− = ±

(
z−1Θ+1 0

yζ+2Θ+1 + ηζ(z−1Θ+1 − z+3Θ−1) z+1Θ−1

)
, (5.5)

which gives

J−1(Y−XY−1
− ) = ±

((
z−1Θ 0

yζ2Θ + ηζ(z−1Θ − z3Θ−1) zΘ−1

)
,

×
(

zΘ−1 xζ−2Θ−1

0 z−1Θ+1

))
(5.6)

as possible preimages ofY−XY−1
− in G∗ × G∗. This takes care of the first entry in the

right-hand-side of(5.4).
As for the second entry, we have (noting that the ambiguity of sign in(5.5)is irrelevant)

(Y−XY−1
− )−1

+ · Y · (Y−XY−1
− )+1

+

=
(

z−1Θ+1 −xζ−2Θ−1

0 z+1Θ−1

)
·
(

ζ+1 χ

0 ζ−1

)

·
(

ζ+1 0

−η ζ−1

)
·
(

z−1Θ+1 −xζ−2Θ−1

0 z+1Θ−1

)

=
(

z−1Θ+1 −xζ−2Θ−1

0 z+1Θ−1

)
·
(

ζ+2 − ηχ χζ−1

−ηζ−1 ζ−2

)
·
(

z−1Θ+1 −xζ−2Θ−1

0 z+1Θ−1

)

=
(

ζ+2 − ηχ + ηxz+1ζ−3Θ−2 xz−1 + χz−2ζ−1 − xz−1ζ−4Θ−2

−ηz+2ζ−1Θ−2 ζ−2Θ−2

)
.



272 F. Gavarini, G. Halbout / Journal of Geometry and Physics 46 (2003) 255–282

Again using(5.3)we find

((Y−XY−1
− )−1

+ · Y · (Y−XY−1
− )+1

+ )+

= ±
(

ζ+1Θ+1 χz−2Θ+1 + xz−1ζ+1Θ+1 − xz−1ζ−3Θ−1

0 ζ−1Θ−1

)
,

((Y−XY−1
− )−1

+ · Y · (Y−XY−1
− )+1

+ )−

= ±
(

ζ−1Θ−1 0

ηz+2Θ−1 ζ+1Θ+1

)
, (5.7)

which gives

J−1((Y−XY−1
− )−1

+ · Y · (Y−XY−1
− )+1

+ )

= ±
((

ζ+1Θ+1 χz−2Θ+1 + xz−1ζ+1Θ+1 − xz−1ζ−3Θ−1

0 ζ−1Θ−1

)
,

×
(

ζ−1Θ−1 0

ηz+2Θ−1 ζ+1Θ+1

))

as possible preimages of(Y−XY−1
− )−1

+ ·Y ·(Y−XY−1
− )+1

+ inG∗×G∗. This takes care of the sec-
ond entry in the right-hand-side of(5.4). Finally, imposing the conditionRWX(eG∗ , eG∗) =
(eG∗ , eG∗) we must always take the “plus” signs, here and in(5.6).

Using notationx1 := x ⊗ 1, z±1
1 := z±1 ⊗ 1, y1 := y ⊗ 1, x2 := 1⊗ x, z±1

2 := 1⊗ z±1

andy2 := 1 ⊗ y we see that these last formulæ together with(5.6)give

RWX(x1) = x1 · z−2
2 · Θ−1, RWX(z±1

1 ) = z±1
1 · Θ∓1,

RWX(y1) = y1 · z+2
2 · Θ+1 + y2 · z+1

2 z−1
1 · Θ+1 − y2 · z+1

2 z+3
1 · Θ−1,

RWX(x2) = x2 · z−2
1 · Θ+1 + x1 · z−1

1 z+1
2 · Θ+1 − x1 · z−1

1 z−3
2 · Θ−1,

RWX(z±1
2 ) = z±1

2 · Θ±1, RWX(y2) = y2 · z+2
1 · Θ−1 (5.8)

for the braidingRWX. To summarize, our discussion lead to the following result (which
somewhat improves the analysis of the like problem performed in[19, Section 9.7]).

Theorem 5.1. Let (sSL∗
2 × sSL∗

2)2 be a 2-fold covering ofsSL∗
2 × sSL∗

2 and let(sSL∗
2 ×

sSL∗
2)

(Θ)
2 := (sSL∗

2 × sSL∗
2)2 \ {Θ %= 0} (a Zarisky open subset ofsSL∗

2 × sSL∗
2).

Then the mapRWX is a Poisson diffeomorphism from(sSL∗
2 × sSL∗

2)
(Θ)
2 to itself.

In addition,RWX is well defined also on a distinguished variety(aSL∗
2 × aSL∗

2)
(Θ)
2 which

is a 2-fold covering ofaSL∗
2 × aSL∗

2 minus one distinguished divisor. In terms of function
algebras, these diffeomorphisms are uniquely determined by formulæ (5.8), which also

define the braidingRWX : F [[sl∗2 ⊕ sl∗2]]
∼=→F [[sl∗2 ⊕ sl∗2]].
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5.4. The quantization deformation construction

(Warning: in the present section we follow the lines of[8], but we adoptdifferent normal-
izationsin the definition of quantum groups and theirR-matrices.) LetUh̄(g) = Uh̄(sl2)
be the unital associative topologicalK[[ h̄]]-algebra with (topological) generatorsX,H, Y ,
and relations

HX − XH = +2X, HY− YH = −2Y, XY− YX= e+h̄H/2 − e−h̄H/2

e+h̄/2 − e−h̄/2
. (5.9)

For later use we set alsoL±1 := e±h̄H/4 andq±1 := e±h̄/2; therefore

L±1X = q±1XL±1, L±1Y = q∓1YL±1, XY− YX= L+2 − L−2

q+1 − q−1
. (5.10)

There is a Hopf algebra structure onUh̄(sl2), given on generators by

∆(X) = X ⊗ e+h̄H/4 + e−h̄H/4 ⊗ X = X ⊗ L+1 + L−1 ⊗ X,

∆(H) = H ⊗ 1 + 1 ⊗ H,

∆(Y) = Y ⊗ e+h̄H/4 + e−h̄H/4 ⊗ Y = Y ⊗ L+1 + L−1 ⊗ Y,

ε(X) = ε(H) = ε(Y) = 0, ε(L±1) = 1, S(X) = −e−h̄/2X = −q−1X,

S(H) = −H, S(Y) = −e−h̄/2Y = −q−1Y, S(L±1) = L∓1.

ThenUh̄(sl2) is a QUEA, whose semiclassical limit isU(sl2) (w.r.t. the co-Poisson structure
considered inSection 5.2). For later use we record that

{XaHbYc|a, b, c ∈ N} is a topologicalK[[ h̄]]-basis ofUh̄(sl2). (5.11)

The very definitions also show that the unital subalgebra ofUh̄(sl2) generated over the
Laurent polynomial ringK[q, q−1] by X, L±1D := (L − 1)/(q − 1), Γ := (L+2 −
L−2)/(q+1 − q−1) andY is a Hopf algebra (overK[q, q−1]) as well, which we denote by
Us

q(sl2). Similarly, the unital subalgebra ofUh̄(sl2) generated over the Laurent polynomial

ring K[q, q−1] by XL−1, K±1 := L±2, T := (K−1)/(q−1), Γ := (K+1 −K−1)/(q+1 −
q−1) andL+1Y is a Hopf algebra as well (a HopfK[q, q−1]–subalgebra ofUs

q(sl2)), which
we denote byUa

q(sl2).
Now we go and computeUh̄(sl2)

′. From definitions we get, for anyn ∈ N,

δn(X) = (id − ε)⊗n(∆n(X)) = (id − ε)⊗n

(
n∑

s=1

(L−1)⊗(s−1) ⊗ X ⊗ (L+1)⊗(n−s)

)

=
n∑

s=1

(∑
t>0

(−h̄)t
Ht

t!

)⊗(s−1)

⊗ X ⊗
(∑

r>0

(+h̄)r
Hr

r!

)⊗(n−s)

∈ h̄n−1Uh̄(sl2) \ h̄nUh̄(sl2)

from which we getẊ := h̄X ∈ Uh̄(g)
′ \ h̄Uh̄(g)

′. Similarly Ẏ := h̄Y ∈ Uh̄(g)
′ \ h̄Uh̄(g)

′.
As for the generatorH , we have∆n(H) = ∑n

s=1 1⊗(s−1) ⊗ H ⊗ 1⊗(n−s) for all n ∈ N,
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whence forδn = (id − ε)⊗n ◦ ∆n we have

δ0(H) = 0, δ1(H) = H ∈ Uh̄(g) \ h̄Uh̄(g), δn(H) = 0 ∈ h̄nUh̄(sl2) ∀ n > 1

so thatḢ := h̄H ∈ Uh̄(sl2)
′ \ h̄Uh̄(sl2)

′. ThereforeUh̄(sl2)
′ contains the subalgebra

U ′ topologically generated bẏX, Ḣ , Ẏ . On the other hand, using(5.11)a thorough—but
straightforward—computation shows that any element inUh̄(sl2)

′ does necessarily lie inU ′
(details are left to the reader; everything follows from definitions and the formulae for∆n).
ThusUh̄(sl2)

′ is nothing but the unital subalgebra ofUh̄(sl2) topologically generated by
Ẋ, Ḣ , Ẏ . As a consequence,Uh̄(sl2)

′ can be presented as the unital associative topological
K[[ h̄]]-algebra with (topological) generatorṡX, Ḣ , Ẏ and relations

ḢẊ − ẊḢ = +2h̄Ẋ, ḢẎ − Ẏ Ḣ = −2h̄Ẏ ,

ẊẎ − Ẏ Ẋ = h̄A · (e+Ḣ/2 − e−Ḣ/2) = h̄A · (L+2 − L−2), (5.12)

whereA := h̄2/(e+h̄/2 −e−h̄/2) = h̄ · (∑s>0(+h̄/2)2s/(2s−1)!)−1(∈ K[[ h̄]]), with Hopf
algebra structure given by

∆(Ẋ) = Ẋ ⊗ e+Ḣ/4 + e−Ḣ/4 ⊗ Ẋ = Ẋ ⊗ L+1 + L−1 ⊗ Ẋ,

∆(Ḣ) = Ḣ ⊗ 1 + 1 ⊗ Ḣ,

∆(Ẏ) = Ẏ ⊗ e+Ḣ/4 + e−Ḣ/4 ⊗ Ẏ = Ẏ ⊗ L+1 + L−1 ⊗ Ẏ ,

ε(Ẋ) = ε(Ḣ) = ε(Ẏ) = 0, ε(L±1) = 1, S(Ẋ) = −e−h̄/2Ẋ = −q−1Ẋ,

S(Ḣ) = −Ḣ, (Ẏ ) = −e−h̄/2Ẏ = −q−1Ẏ , S(L±1) = L∓1.

As an immediate consequence, this description yields also a similar presentation ofUh̄(sl2)
′/

h̄Uh̄(sl2)
′: then comparing the latter with the presentation ofF [[sl∗2]] that one argues from

Section 5.2we find that, as predicted by the quantum duality principle (cf.Theorem 2.3)
there is an isomorphism of(topological) Poisson Hopf algebras

Φh :
Uh̄(sl2)

′

h̄Uh̄(sl2)′
= K[[Ẋ|h̄=0, Ḣ |h̄=0, Ẏ |h̄=0]]

∼=→F [[sl∗2]] = k[[x, (z − 1), y]] ,

where we setS|h̄=0 := S|modh̄Uh̄(sl2)
′ for all S ∈ Uh̄(sl2)

′ and the Poisson structure
considered onUh̄(sl2)

′/h̄Us
q(sl2)

′ is the one given by the standard recipe (see Section 1.3
(b))

{a|h̄=0, b|h̄=0} :=
(

ab− ba

h̄

)∣∣∣∣
h̄=0

∀ a, b ∈ Uh̄(sl2)
′.

Explicitly, Φh̄ is given by

Ẋ|h̄=0 �→ x, Ḣ |h̄=0 �→ −4 log(z), L±1|h̄=0 �→ z∓1, Ẏ |h̄=0 �→ y. (5.13)

Note also that the unitalK[q, q−1]–subalgebra ofUh̄(sl2)—and ofUs
q(sl2)—generated by

X̌ := (q−1)X, L±1, Γ̌ := (q−1)Γ andY̌ := (q−1)Y is in fact aHopfsubalgebra, which
we denote byUs

q(sl2)
′ (note also thaťD := (q − 1)D = L − 1 ∈ Us

q(sl2)
′ too). Indeed,
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Us
q(sl2)

′ admits the presentation by the above generators and relations

L±1L∓1 = 1, L±1Γ̌ = Γ̌ L±1, (1 + q−1)Γ̌ = L+2 − L−2,

X̌Y̌ − Y̌ X̌ = (q − 1)Γ̌ , L+2 − L−2 = (1 + q−1)Γ̌ ,

L±1Y̌ = q∓1Y̌L±1, L±1X̌ = q±1X̌L±1,
√

Γ
√

Y = q−2√Y
√

Γ − (q − 1)(q + q−1)
√

F,
√

Γ
√

X = q+2√X
√

Γ + (q − 1)(q + q−1)
√

X

with Hopf structure given by

∆(
√

X) = √
X ⊗ L+1 + L−1 ⊗ √

X ε(
√

X) = 0 S(
√

X) = −q−1√X

∆(
√

Γ ) = √
Γ ⊗ L+2 + L−2 ⊗ √

Γ ε(
√

Γ ) = 0 S(
√

Γ ) = −√
Γ

∆(L±1) = L±1 ⊗ L±1 ε(L±1) = 1 S(L±1) = L∓1

∆(
√

Y) = √
Y ⊗ L+1 + L−1 ⊗ √

Y ε(
√

Y) = 0 S(
√

Y) = −q−1√Y.

Similarly, the unitalK[q, q−1]–subalgebra ofUh̄(sl2)—and of Ua
q(sl2) and Us

q(sl2)
′—

generated by
√

XL−1, K±1,
√

Γ andL+1√Y is in fact aHopf subalgebra too, which we
denote byUa

q(sl2)
′, and is of course a Hopf subalgebra ofUs

q(sl2)
′ as well (with

√
T :=

(q − 1)T = K − 1 ∈ Ua
q(sl2)

′ too).
Now this description yields also a similar presentation ofUs

q(sl2)
′/(q− 1)Us

q(sl2)
′: then

comparing the latter with the presentation ofF [sSL∗
2] in Section 5.2we find thatthere is a

Poisson Hopf algebra isomorphism

Φs
q :

Us
q(sl2)

′

(q − 1)Us
q(sl2)

′
∼=→F [sSL∗

2],

where we setS|q=1 := S mod(q−1)Us
q(sl2)

′ for all S ∈ Us
q(sl2)

′ and the Poisson structure
considered onUs

q(sl2)
′/(q − 1)Us

q(sl2) is the one given by the standard recipe

{a|q=1, b|q=1} :=
(

ab− ba

(q − 1)

)∣∣∣∣
q=1

∀ a, b ∈ Us
q(sl2)

′.

Explicitly, Φs
q is given by

√
X|q=1 �→ 1

2x,
√

Γ |q=1 �→ 1
2(z

−2 − z+2),

L±1|q=1 �→ z∓1,
√

Y |q=1 �→ 1
2y.

In addition,Φs
q gives by restriction a similar Poisson Hopf algebra isomorphism

Φa
q :

Ua
q(sl2)

′

(q − 1)Ua
q (sl2)

′
∼=→F [aSL∗

2], (
√

XL−1)|q=1 �→ xz

2
,

√
Γ |q=1 �→ z−2 − z+2

2
, K±1|q=1 �→ z∓2, (L+1√Y)|q=1 �→ z−1y

2
.
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The reason for consideringUc
q(sl2) andUc

q(sl2)
′ (for c = a, s) is that we can compute the

braidingRGH through them, as we shall see in the sequel.
First,Uh̄(sl2) is indeed aQTQUEA, whoseR-matrix isRh̄ = R0 · R1 with

R0 = exp

(
h̄ · H ⊗ H

4

)
,

R1 =
∑
n∈N

(ēh)

( n+1
2

)
(n)ēh !

(ēh − 1)n · (e+h̄H/4X)n ⊗ (e−h̄H4Y)n,

where(n)a! := ∏n
r=1(a

n −1)/(a−1) (in this casea = ēh). ThisR-matrix is a quantization
of the classicalr-matrix ofsl2, in the sense thatRh̄ = 1+rh̄+O(h̄2), whereO(h̄2) is some
element ofh̄2 · Uh̄(g) ⊗ Uh̄(g) (like in Remark 1.9 (b)); thus theQTQUEA (Uh̄(sl2), Rh̄)

is a quantization of the quasitriangular Lie bialgebra(sl2, r), as required to ignite the
quantization deformation procedure to construct a braiding onF [[g∗ ⊕ g∗]] for g = sl2.

Now, we are interested in the braiding operatorRGH induced ath̄ = 0 by the operator
Rh̄ := Ad(Rh̄) acting on the algebra(Uh̄(sl2)⊗̂Uh̄(sl2))

′ = Uh̄(sl2)
′⊗̃Uh̄(sl2)

′.
We perform the calculation along the following lines. As theR-matrix factors intoRh̄ =

R0 ·R1, we compute separately the adjoint action of the two factors ontoUh̄(sl2)
′⊗̃Uh̄(sl2)

′
moduloh̄. A first analysis shows that both actions are given by exponentials of Hamiltonian
vector fields on the formal Poisson groupsl∗2 × sl∗2. The first action—namely, that arising
from R0—is computed via straightforward calculation. As for the second action—the one
of R1—one in fact has to compute the action of a Hamiltonian vector field onsSL∗

2 ×
sSL∗

2 (minus a divisor): using Leibniz’ rule, one reduces to compute the action of some
Hamiltonian vector fields onsSL∗

2 alone.
To begin with, writeRh̄ = R0 · R1 in terms ofUh̄(sl2)

′: like in [8, Section 4], we find

R0 = exp

(
h̄ · H ⊗ H

4

)
= exp

(
h̄−1 · Ḣ ⊗ Ḣ

4

)
,

R1 =
∑
n∈N

(ēh)

( n+1
2

)
(n)ēh!

(ēh1)n · (e+h̄H/4X)n ⊗ (e−h̄H/4Y)n

= ((ēh − 1)2 · L+1X ⊗ L−1Y; ēh)∞,

where(z; q)∞ := ∏
n∈N(1 − zqn). Now, the behavior ofR1 whenh̄ → 0 is ruled by[14],

Lemma 3.4.1 (see also[8], Lemma 2.2), namely (proceeding as in[9, Section 4]), we have

R1 = exp

(
−1

h̄
·
∫ (ēh−1)2·L+1X⊗L−1Y

0

log(1 − τ)

τ
dτ · (1 + h̄C)

)

= exp

(
−1

h̄
·
∫ L+1Ẋ⊗L−1Ẏ

0

log(1 + t)

t,
dt · (1 + h̄K)

)
,
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where
∫ L+1Ẋ⊗L−1Ẏ

0 (log(1+ t)/t)dt := ∑
n>0(L

+1Ẋ⊗L−1Ẏ )/n2 (use Mac Laurin expan-
sion of log(1 + x)) andC andK denote suitable elements ofUh̄(sl2)

′⊗̃Uh̄(sl2)
′, namely

again power series inL+1Ẋ⊗L−1Ẏ , hence they commute with
∫ L+1Ẋ⊗L−1Ẏ

0 (log(1−t)/t)dt;
so

R1 = exp

(
−1

h̄
·
∫ L+1Ẋ⊗L−1Ẏ

0

log(1 + t)

t
dt · (1 + h̄K)

)

= exp

(
−1

h̄
·
∫ L+1Ẋ⊗L−1Ẏ

0

log(1 + t)

t
dt

)
· Z

for someZ ∈ Uh̄(sl2)
′⊗̃Uh̄(sl2)

′. Of course we have

Rh̄ := Ad(Rh̄) = Ad(R0 · R1) = Ad(R0) ◦ Ad(R1) = R(0)
h̄ ◦R(1)

h̄

with R(0)
h̄ := Ad(R0),R

(1)
h̄ := Ad(R1). Thus also

RGH := Rh̄|h̄=0 = R(0)
GH ◦R(1)

GH

with R
(0)
GH := R(0)

h̄ |h̄=0, R
(1)
GH := R(1)

h̄ |h̄=0. (5.14)

Finally we have

R
(1)
h̄ := Ad(R1) = Ad

(
exp

(
−1

h̄
·
∫ L+1Ẋ⊗L−1Ẏ

0

log(1 + t)

t
dt

)
· Z
)

= Ad

(
exp

(
−1

h̄
·
∫ L+1Ẋ⊗L−1Ẏ

0

log(1 + t)

t
dt

))
◦ Ad(Z)

= Ad

(
exp

(
−1

h̄
·
∫ L+1Ẋ⊗L−1Ẏ

0

log(1 + t)

t
dt

))
modh̄ · Uh̄(sl2)

′ ⊗ Uh̄(sl2)
′

becauseZ ∈ Uh̄(sl2)
′⊗̃Uh̄(sl2)

′ and(Uh̄(sl2)
′⊗̃Uh̄(sl2)

′)|h̄=0 = F [[sl∗2 × sl∗2]] is com-
mutative (hereafter, byS|h̄=0 we shall denote the coset ofS ∈ Uh̄(sl2)

′⊗̃Uh̄(sl2)
′ modulo

h̄ · Uh̄(sl2)
′⊗̃Uh̄(sl2)

′). Hence our analysis shows thatR(i)
h̄ = Ad(exp(h̄−1Λi)) with Λi ∈

Uh̄(sl2)
′⊗̃Uh̄(sl2)

′ for i = 0,1. Indeed, we found

Λ0 = (Ḣ ⊗ Ḣ)

4
, Λ1=−

∫ L+1Ẋ⊗L−1Ẏ

0

log(1 + t)

t
dt = −

∑
n>0

(L+1Ẋ ⊗ L−1Ẏ )n

n2
.

But then we haveR(i)
h̄ = Ad(exp(h̄−1Λi)) = exp(ad[,](h̄

−1Λi)) = exp(ad[,]
h̄
(Λi)) ≡

exp(ad{,}(Λi|h̄=0)), that isR(i)
GH = exp(ad{,}(Λi|h̄=0)). In geometric terms, this means that

R
(i)
GH (hence alsoRGH) is the integration of a Hamiltonian vector fields over the formal

Poisson groupsl∗2 × sl∗2.

To describeR(0)
GH andR(1)

GH we setS1 := S ⊗ 1, S2 := 1 ⊗ S for anyS ∈ Uh̄(sl2) (note
thatS1 andS2 commute with each other) and alsoS̄ for any coset modulo ¯h.
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The case ofR(0)
GH is trivial: direct computation—using(5.12)—gives

R
(0)
h̄ (Ẋ1) = Ẋ1L

+2
2 , R

(0)
h̄ (Ḣ1) = Ḣ1, R

(0)
h̄ (L̇±1

1 ) = L̇±1
1 ,

R
(0)
h̄ (Ẏ1) = Ẏ1L

−2
2 , R

(0)
h̄ (Ẋ2) = L+2

1 Ẋ2, R
(0)
h̄ (Ḣ2) = Ḣ2,

R
(0)
h̄ (L̇±1

2 ) = L̇±1
2 , R

(0)
h̄ (Ẏ2) = L−2

1 Ẏ2,

whence using(5.13)we argue at once forR(0)
GH : F [[sl∗2 ⊕ sl∗2]]

∼=→F [[sl∗2 ⊕ sl∗2]]

R
(0)
GH(x1) = x1z

−2
2 , R

(0)
GH(z

±1
1 ) = z±1

1 , R
(0)
GH(y1) = y1z

+2
2 ,

R
(0)
GH(x2) = z−2

1 x2, R
(0)
GH(z

±1
2 ) = z±1

2 , R
(0)
GH(y2) = z+2

1 y2 (5.15)

(recall thatF [[sl∗2 ⊕ sl∗2]] = K[[x1, (z1 − 1), y1, x2, (z2 − 1), y2]] thusR(0)
GH is uniquely

determined by the images ofxi, zi, yi [i = 1,2]).
As forR(1)

GH, we proceed in steps. First, using the Jacobi identity for{, } we get

R
(1)
GH = exp

(
ad{,}

(
−
∫ L+1

1 Ẋ1L
−1
2 Ẏ2

0

log(1 + t)

t
dt

∣∣∣∣∣
h̄=0

))

= exp

(
ad{,}

(
−
∫ z−1

1 x1z
+1
2 y2

0

log(1 + t)

t
dt

))

= exp

(
µ

(
− log(1 + z−1

1 x1z
+1
2 y2)

z−1
1 x1z

+1
2 y2

)
◦ ad{,}(z−1

1 x1z
+1
2 y2)

)
,

whereµ(S) denotes the operator of left multiplication byS ∈ F [[sl∗2 ⊕ sl∗2]]. Indeed

ad{,}

(
−
∫ z−1

1 x1z
+1
2 y2

0

log(1 + t)

t
dt

)
()) = ad{,}

(
−
∑
n>0

(z−1
1 x1z

+1
2 y2)

n2

)
())

= −
∑
n>0

1

n2
· {(z−1

1 x1z
+1
2 y2)

n, )} = −
∑
n>0

1

n2
n(z−1

1 x1z
+1
2 y2)

n−1 · {z−1
1 x1z

+1
2 y2, )}

= −
∑
n>0

(z−1
1 x1z

+1
2 y2)

n−1

n
· {z−1

1 x1z
+1
2 y2, )}

= − log(1 + z−1
1 x1z

+1
2 y2)

z−1
1 x1z

+1
2 y2

· {z−1
1 x1z

+1
2 y2, )}

(because of Jacobi identity:{·, )} = −ad{,}()) is a derivation!). Secondly, again by the
Jacobi identity and the commutation relationz−1

1 x1 · z+1
2 y2 = z+1

2 y2 · z−1
1 x1 we get
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µ

(
− log(1 + z−1

1 x1z
+1
2 y2)

z−1
1 x1z

+1
2 y2

)
◦ ad{,}(z−1

1 x1z
+1
2 y2)

= µ

(
− log(1 + z−1

1 x1z
+1
2 y2)

z−1
1 x1z

+1
2 y2

)
◦ ad{,}(z−1

1 x1) ◦ µ(z+1
2 y2)

+µ

(
− log(1 + z−1

1 x1z
+1
2 y2)

z−1
1 x1z

+1
2 y2

)
◦ µ(z−1

1 x1) ◦ ad{,}(z+1
2 y2)

= µ

(
− log(1 + z−1

1 x1z
+1
2 y2)

z−1
1 x1

)
◦ ad{,}(z−1

1 x1)

+µ

(
− log(1 + z+1

2 y2)

z−1
1 x1z

+1
2 y2

)
◦ ad{,}(z+1

2 y2).

The two summands above are mutually commuting operators—thanks to the commutation
relationz−1

1 x1 · z+1
2 y2 = z+1

2 y2 · z−1
1 x1—so when we take the exponential we get

R
(1)
GH = exp

(
µ

(
− log(1 + z−1

1 x1z
+1
2 y2)

z−1
1 x1z

+1
2 y2

)
◦ ad{,}(z−1

1 x1z
+1
2 y2)

)

= exp

(
µ

(
− log(1 + z−1

1 x1z
+1
2 y2)

z−1
1 x1

)
◦ ad{,}(z−1

1 x1)

+µ

(
− log(1 + z−1

1 x1z
+1
2 y2)

z+1
2 y2

)
◦ ad{,}(z+1

2 y2)

)

= exp

(
µ

(
− log(1 + z−1

1 x1z
+1
2 y2)

z−1
1 x1

)
◦ ad{,}(z−1

1 x1)

)
◦

exp

(
µ

(
− log(1 + z−1

1 x1z
+1
2 y2)

z+1
2 y2

)
◦ ad{,}(z+1

2 y2)

)
.

In a nutshell, we have

R
(1)
GH = exp(E1) ◦ exp(F2) with




E1 := µ

(
− log(∇2)

z−1
1 x1

)
◦ ad{,}(z−1

1 x1),

F2 := µ

(
− log(∇2)

z+1
2 y2

)
◦ ad{,}(z+1

2 y2),

(5.16)

where∇ := (1 + z−1
1 x1z

+1
2 y2)

1/2. We proceed now with computations.
Since{s1, r2} = 0 for all s, r ∈ F [[sl∗2]], we haveE1(r2) = 0 for all r ∈ F [[sl∗2]], so

exp(E1)(x2) = x2, exp(E1)(z
±1
2 ) = z±1

2 , exp(E1)(y2) = y2. (5.17)

Now for the rest! We have to compute things like{s1, r1}, so for simplicity we shall drop
the subscript 1 throughout.
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For the operator ad{,}(z−1x) (a derivation!) we have the formulæ

{z−1x, x} = {z−1, x} · x + z−1 · {x, x} = {z−1, x} · x =
(
z−1 1

2x
)

· x,

{z−1x, z±1} = {z−1, z±1} · x + z−1 · {x, z±1} = z−1 · {x, z±1} = ±
(
z−1 1

2x
)

· z±1,

{z−1x, y} = {z−1, y} · x + z−1 · {x, y} = −
(

1
2z

−1
)

· y · x + z−1 · (z−2 − z+2)

= −
(
z−1 1

2x
)

· y + z−3 − z+1,

{z−1x, z+1y} = {z−1x, z+1} · y + z+1 · {z−1x, y} = z−2 − z+2.

Then for exp(E1) = exp(µ(−log(∇2)/z−1
1 x1) ◦ ad{,}(z−1

1 x1)) we have

exp(E1)(x1) = exp
(
−1

2log(∇2)
)

· x1 = exp(−log(∇)) · x1 = x1 · ∇−1,

exp(E1)(z
±1
1 ) = exp

(
∓1

2log(∇2)
)

· z±1
1 = exp(∓log(∇)) · z±1

1 = z±1
1 · ∇∓1,

exp(E1)(y1) = y1 · ∇+1 + y2 · z+1
2 z−3

1 · ∇+1 − y2 · z+1
2 z+1

1 · ∇−1, (5.18)

where the latter identity is computed (since exp(E1) is an automorphism!) as follows:

exp(E1)(y1) = exp(E1)(z
−1
1 · z+1

1 y1) = exp(E1)(z
−1
1 ) · exp(E1(z

+1
1 y1)

= z−1
1 · ∇+1 ·

(
z+1

1 y1 +
∑
n>1

1

n!
·
(
− log(∇2)

z−1
1 x1

)n

· En−1
1 (z−2

1 − z+2
1 )

)

= z−1
1 · ∇+1 ·

(
z+1

1 y1 +
∑
n>0

1

n!
·
(
− log(∇2)

z−1
1 x1

)n

· (−z−1
1 x1)

n−1 · z−2
1

−
∑
n>0

1

n!
·
(
− log(∇2)

z−1
1 x1

)n

· (+z−1
1 x1)

n−1 · z+2
1 )

)

= z−1
1 · ∇+1 ·

(
z+1

1 y1 + exp(+log(∇2)) − 1

+z−1
1 x1

· z−2
1

−exp(−log(∇2)) − 1

−z−1
1 x1

· z+2
1

)

= z−1
1 · ∇+1 ·

(
z+1

1 y1 + ∇+2 − 1

+z−1
1 x1

· z−2
1 − ∇−2 − 1

−z−1
1 x1

· z+2
1

)

= z−1
1 · ∇+1 · (z+1

1 y1 + y2 · z+1
2 z−2

1 − y2 · z+1
2 z+2

1 · ∇−2)

= y1 · ∇+1 + y2 · z+1
2 z−3

1 · ∇+1 − y2 · z+1
2 z+1

1 · ∇−1.

Now for exp(F2). Again, since{s1, r2} = 0 for all s, r ∈ F [[sl∗2]] we haveF2(s1) = 0 for
all s ∈ F [[sl∗2]], so

exp(F2)(x1) = x1, exp(F2)(z
±1
1 ) = z±1

1 , exp(F2)(y1) = y1. (5.19)
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As for the rest, we can base upon the previous results, as follows. First, we note that there
is aPoisson algebraautomorphism

Φ : F [[sl∗2]]
∼=→F [[sl∗2]] , x �→ y, z±1 �→ z∓1, y �→ x

such thatΦ−1 = Φ (and which also restrict toF [sSL∗
2] and toF [aSL∗

2]). Then we have
immediately from definitions that(Φ ⊗ Φ)(E1)(s ⊗ r) = σ(F2(Φ(r) ⊗ Φ(s)) for all s, r ∈
F [[sl∗2]] (with σ as in Definition 2.4), whence in particular we argue

F2(s2) = σ(Φ⊗2(E1(Φ
−1(s1)))) = σ(Φ⊗2(E1(Φ(s1)))) ∀ s ∈ F [[sl∗2]]

and so

exp(F2)(s2) = σ(Φ⊗2(exp(E1)(Φ(s1)))) ∀ s ∈ F [[sl∗2]] .

Using this and formulæ(5.18)we eventually get

exp(F2)(x2) = x2 · ∇+1 + x1 · z−1
1 z+3

2 · ∇+1 − x1 · z−1
1 z−1

2 · ∇−1,

exp(F2)(z
±1
2 ) = z±1

2 · ∇±1, exp(F2)(y1) = y2 · ∇−1. (5.20)

Formulæ(5.16)–(5.20)give us a complete description ofR(1)
GH. To summarize, it is given

R
(1)
GH(x1) = x1 · ∇−1, R

(1)
GH(z

±1
1 ) = z±1

1 · ∇∓1

R
(1)
GH(y1) = y1 · ∇+1 + y2 · z+1

2 z−3
1 · ∇+1 − y2 · z+1

2 z+1
1 · ∇−1,

R
(1)
GH(x2) = x2 · ∇+1 + x1 · z−1

1 z+3
2 · ∇+1 − x1 · z−1

1 z−1
2 · ∇−1,

R
(1)
GH(z

±1
2 ) = z±1

2 · ∇±1, R
(1)
GH(y2) = y2 · ∆−1. (5.21)

Finally, composing withR(0)
GH—see(5.15)—we find at last

RGH(x1) = x1 · z−2
2 · Θ−1, RGH(z

±1
1 ) = z±1

1 · Θ∓1,

RGH(y1) = y1 · z+2
2 · Θ+1 + y2 · z+1

2 z−1
1 · Θ+1 − y2 · z+1

2 z+3
1 · Θ−1,

RGH(x2) = x2 · z−2
1 · Θ+1 + x1 · z−1

1 z+1
2 · Θ+1 − x1 · z−1

1 z−3
2 · Θ−1,

RGH(z
±1
2 ) = z±1

2 · Θ±1, RGH(y2) = y2 · z+2
1 · Θ−1 (5.22)

for RGH = R(0)
GH ◦R(1)

GH (see(5.14)), with Θ := (1 + x1z
+1
1 z−1

2 y2)
1/2 = R(0)

GH(∇).
Therefore, just comparing(5.22)with (5.8)we get as an outcome the main result of this

section.

Theorem 5.2. The braidingsRWX andRGH for g = sl2(C) do coincide. In other words,
the answer to the“question” in Section 5.1is positive forg = sl2(C).
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